QUALITY OF ELECTRICITY SUPPLY MONITORING AND REGULATION:
THE ITALIAN EXPERIENCE

Luca Lo Schiavo
llloschiavo@autorita.energia.it
Autorità per l’energia elettrica e il gas, Italy
Quality and consumers affairs, Deputy Director

Workshop with Slovenian Regulatory Agency,
Maribor 7 April 2008

THE ELECTRICITY DISTRIBUTION AND SUPPLY IN ITALY

- MARKET
 total consumption 330 TWh (2006 incl.losses)
 free customers 150 TWh (2006)

- USERS
 LV: around 35 millions, about 130 TWh
 MV: around 100,000, about 105 TWh
 HV: around 1,000, about 60 TWh (+self-consumpt.)

- NETWORKS
 HV: 20,000 km
 MV: 367,000 km
 LV: 798,000 km

- DISTRIBUTION SHARES:
 ENEL 85%
 OTHERS 15%

- OTHER UTILITIES
 > 100,000 users: 11 local utilities
 5,000-100,000 users: 31 local utilities

- MICRO NETWORKS
 about 140 (?) small utilities (<5,000 users)
Content

- The evolution of the legal framework: from Citizen’s Charter to service quality regulation
- The development of continuity of supply monitoring in distribution networks
- Incentive/penalty regulation for continuity of supply for reducing interruptions
- Automatic compensations to the customers (guaranteed commercial quality standards)
- A comprehensive view of service quality regulation

LEGAL FRAMEWORK EVOLUTION

1/ Brief history

- From 1997 the regulatory Authority is fully in charge of (new) service quality regulation
- Before 1997, (old) service quality regulation was under the “Citizen’s charter” scheme, that was a “self-regulation” scheme issued before the Authority was constituted
- Under the “Citizen’s charter” scheme:
 1. each utility could set its own quality standards
 2. each utility had to identify at least 4 individual standards subject to refund if they were not met
 3. almost all utilities adopted compensation schemes on request to customers
 4. only very few companies (only one large in gas sector) adopted automatic compensation mechanism
- Since 2000 the Citizen’s charter scheme has been overcome by the new quality regulation of the Authority
LEGAL FRAMEWORK EVOLUTION

2/ The former compensation scheme upon-request was not effective

<table>
<thead>
<tr>
<th>COMPANIES</th>
<th>Standard mismatch (€)</th>
<th>Penalties actually paid (#)</th>
<th>Standard mismatch (€)</th>
<th>Penalties actually paid (#)</th>
<th>Procedure for penalties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enel</td>
<td>5,289</td>
<td>2</td>
<td></td>
<td></td>
<td>On request</td>
</tr>
<tr>
<td>Italgas</td>
<td></td>
<td></td>
<td>1,002</td>
<td>1,002</td>
<td>Automatic</td>
</tr>
<tr>
<td>Acea Roma</td>
<td>ND</td>
<td>1</td>
<td></td>
<td></td>
<td>On request</td>
</tr>
<tr>
<td>Aem Milano</td>
<td>4</td>
<td>0</td>
<td>136</td>
<td>2</td>
<td>On request</td>
</tr>
<tr>
<td>Camuzzi</td>
<td></td>
<td></td>
<td>691</td>
<td>0</td>
<td>On request</td>
</tr>
<tr>
<td>Other major loc.</td>
<td>513</td>
<td>0</td>
<td>8,878</td>
<td>76</td>
<td>On request</td>
</tr>
<tr>
<td>Medium-size loc.</td>
<td>293</td>
<td>18</td>
<td>3,172</td>
<td>26</td>
<td>On request (automatic 1 loc.ut.)</td>
</tr>
<tr>
<td>Small-size loc.</td>
<td>ND</td>
<td>14</td>
<td>386</td>
<td>131</td>
<td>On request (automatic 6 loc.ut.)</td>
</tr>
<tr>
<td>Total</td>
<td>6,099</td>
<td>35</td>
<td>14,265</td>
<td>1,237</td>
<td>Year 1998</td>
</tr>
</tbody>
</table>

LEGAL AND REGULATORY FRAMEWORK

3/ Regulatory Authority’s legal powers

- **Regulatory Authority**
 - **QUALITY STANDARDS** (guaranteed/overall)
 and DIRECTIVES
 Art. 2(12) para. h
 - **AUTOMATIC COMPENSATIONS**
 in case of standard non-fulfillment
 Art. 2(12) para. g
 (vs. customers)
 - **QUALITY-TARIFF LINK**
 Art. 2(19) para. a)
 Art. 2(12) para. e)
 (vs. utilities)
 - **PROPOSALS FOR LICENSING**
 Art. 2(12) para. b) and o)
 (vs. licensing admin.)
 - **SANCTIONS** in case of misrespect of regulatory orders
 Art. 2(20) para. c)
LEGAL AND REGULATORY FRAMEWORK
4/ Guaranteed and overall standards

- The law foresees **two types of quality standards**
 - **Guaranteed standards (GS):** have the function of ensuring that all consumers receive a minimum quality level and therefore are **oriented to the protection of (worst-served) customers through compensations**;
 - **Overall standards (OS):** have the function to monitor the company performance at system level and therefore are **oriented to promoting improvement through incentive/penalties schemes**
- It’s up to the Authority to **choose which type of standard** apply to different quality issues

LEGAL AND REGULATORY FRAMEWORK
5/ Guaranteed and overall standards

- **Guaranteed Standards**
 - referred to each single transaction between customer and utility
 - detailed knowledge of the company performance, down to individual customer level (detailed measurements are needed)
 - Guaranteed standard = minimum quality
 - CQ: maximum time to connect the customer with simple work
 - CS: maximum number of interruptions per year that affect the single customer
- **Overall Standards**
 - referred to the average performance of the utility in a given area
 - monitoring function through periodic publication of results (might affect the reputation of the company, if not its financial results)
 - Overall standard = average quality (or quality at a given percentile)
 - CQ: at least 90% of customer’s claims answered within the maximum time for substantial reply
 - CS: maximum number of interruptions per year per customer (average in a given area)
LEGAL AND REGULATORY FRAMEWORK
6/ Consultation and Decision Process

- The Authority issues **consultations papers** containing guidelines and proposals
- Consultation papers are **public** (on the web site) and are send to all **stakeholders involved**:
 - companies
 - consumers’ associations
 - trade unions
 - environmental associations
 - technical associations and bodies
- Formal hearings and informal meetings are organized with main actors
- Everybody can formulate questions, **comments and suggestions in written**
- No decision is taken without at least one consultation round (two/three for most complex issues – R.I.A.s)

FIRST REGULATORY PERIOD
CONSULTATION PROCESS

---|---|---|---|---|---
1. **OVERALL GUIDELINES FOR QUALITY REGULATION**
2. **CONSULT. PAPER ON CONTINUITY MEASUREM.**
3. **CONSULT. PAPER ON COMM.QUAL. REGULATION**
4. **HEARINGS ON PROPOSAL FOR COMM. QUALITY REGUL.**
5. **CONSULT. PAPER ON CONTINUITY INCENTIVE REGUL.**
6. **HEARINGS ON PROPOSAL FOR INCENT. REGULAT.**

- **D.128/99 CONTINUITY MEASUREM. RULES**
 - **CITIZEN’S CHARTERS ANALYSIS + SATISFACT. & EXPECTAT. SURVEY**
 - **AUDITS ON CONTINUITY DATA PROVIDED BY COMPANIES**
 - **D.201/99 COMMERC. QUALITY REGULAT.**
 - **D.202/99 CONTINUITY REGULAT.**
 - **D.155/02 CONTINUITY CODE**

Date arrows indicate major consultation process milestones.
MONITORING IS A PRELIMINARY STEP TOWARDS INCENTIVE REGULATION

- The evolution of the legal framework: from Citizen’s Charter to service quality regulation
- The development of continuity of supply monitoring in distribution networks
- Incentive/penalty regulation for continuity of supply for reducing interruptions
- Automatic compensations to the customers (guaranteed commercial quality standards)
- A comprehensive view of service quality regulation

Content

TOWARDS INCENTIVE REGULATION

The development of continuity of supply

The evolution of the legal framework:
from Citizen’s Charter to service quality regulation

A comprehensive view of service quality regulation

2nd period regulation

A comprehensive view of service quality regulation

1st regulatory period

The evolution of the legal framework:
from Citizen’s Charter to service quality regulation

A comprehensive view of service quality regulation

3rd period

proposals for 3rd period

2nd period regulation

proposals for 2nd period

1st regulatory period

first proposals

assess initial situation

Focus: QoS monitoring

10 years

ELECTRICITY SUPPLY SERVICE
Main quality factors

- Security Deposits
- Tools for paying bills
- Non-payment handling
- Disconnections for debt
- Complaints
- Reading
- Billing
- Providing supply
- Reconnections after non-payment
- Disconnections
- Appointments
- New supply estimates
- Connections to network
- Voltage and meters investigations
- Long, short and transient non-planned supply interruptions
- Planned supply interruptions
- Voltage limits
- Voltage dips
- Harmonics
- Flicker

Output regulation

- Call centers
- Billing
- Appointments
- Reconnections after non-payment
- Disconnections
- Reading
- Complaints
- New supply estimates
- Connections to network
- Providing supply
- Meter investigations
- Unplanned supply interruptions (long and short)
- Planned (notified) supply interruptions
- Voltage investigations
- Voltage variations
- Voltage dips / swells
- Rapid voltage changes
- Flicker
- Harmonics
- Unbalance
WHO MEASURES CONTINUITY

- Distribution company
 - Remote control system (SCADA): allows automatic registration of each interruptions starting time
 - Italy: compulsory on each HV circuit and each MV circuit
 - Interruption register: contain all data requested for each interruption (manually updated)
 - Italy: compulsory for each long and short interruption; users can have access to the register

- Regulatory Authority
 - Is provided each year with continuity indicators and an electronic copy of the register and makes audits
 - Italy: SAIDI, SAIFI, MAIFI, per each territorial district (~300)

- Customers: individual information for major ones
 - Italy: customer can ask for individual measurement
HOW CONTINUITY IS MEASURED

• Interruptions are described through
 – Time between events or number of interruptions (for each type) in a period of time (in general, 1 year) and in a given distribution territory (homogenous!) of N customers
 • SAIFI: average number of long interruptions per customer per year (MAIFI for short interr.)
 \[SAIFI = \frac{\sum_{i=1}^{K} N_i}{N_{tot}} \]
 • SAIDI: average duration of interruption per customer per year
 \[SAIDI = \frac{\sum_{i=1}^{K} N_i D_i}{N_{tot}} \]
 – Per each interruption of the same type, main characteristics to be recorded are
 • Customers affected (involved) \(N \rightarrow \text{SAIFI, SAIDI} \)
 • Duration (time of start & finish) \(D_i \rightarrow \text{SAIDI} \)

TERRITORIAL CLASSIFICATION OF CUSTOMER AFFECTED

• A territorial classification is needed in order to set separate and acceptable standards
• Italian classification
 • Urban (“high density”) areas: territory of municipalities with more than 50,000 inhabitants
 • Sub-urban (“medium density”) areas: territory of municipalities with more than 5,000 and less than 50,000 inhabitants
 • Rural (“low density”) areas: territory of municipalities with less than 5,000 inhabitants
• In other EU countries different criteria are adopted; in some cases ex-post methods are adopted (f.i. Great Britain and Sweden)
CALCULATION OF SAIDI

Contribute to SAIDI of the current interrupt. = \frac{U_1 \cdot T_a + U_2 \cdot T_b + U_3 \cdot T_c}{\text{Total users supplied}}

Lost minutes = U_1 \cdot T_a + U_2 \cdot T_b + U_3 \cdot T_c

EXAMPLE OF CONTINUITY YEARLY DATA PROVIDED TO THE AUTHORITY

DISCO: COMPANY A
Territorial area: urban
Year: 2002
Type of interruption: long unplanned

Voltage levels

Lost minutes per user

Responsibility

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>HV</th>
<th>MV</th>
<th>LV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Majeure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiscO'S Resp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of interruption per user

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>HV</th>
<th>MV</th>
<th>LV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Majeure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiscO'S Resp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THE ITALIAN SCHEME FOR MONITORING (enforced from 1999)

<table>
<thead>
<tr>
<th>VOLTAGE LEVELS</th>
<th>CAUSE</th>
<th>TRASM.</th>
<th>HV</th>
<th>MV</th>
<th>LV</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DURATION (CML, SAIDI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acts of God</td>
<td>0.0</td>
<td>14.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td>16.0</td>
</tr>
<tr>
<td>Users’ or third parties’ respons.</td>
<td>2.3</td>
<td>0.1</td>
<td>11.2</td>
<td>1.5</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Utility’s responsibility</td>
<td>0.0</td>
<td>3.0</td>
<td>45.6</td>
<td>14.4</td>
<td>63.1</td>
<td></td>
</tr>
<tr>
<td>Total all causes</td>
<td>2.3</td>
<td>3.1</td>
<td>71.7</td>
<td>17.0</td>
<td>94.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUSE (CIs, SAIFI)</th>
<th>TRASM.</th>
<th>HV</th>
<th>MV</th>
<th>LV</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acts of God</td>
<td>0.00</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>Users’ or third parties’ respons.</td>
<td>0.14</td>
<td>0.01</td>
<td>0.28</td>
<td>0.01</td>
<td>0.44</td>
</tr>
<tr>
<td>Utility’s responsibility</td>
<td>0.00</td>
<td>0.10</td>
<td>1.87</td>
<td>0.14</td>
<td>2.11</td>
</tr>
<tr>
<td>Total all causes</td>
<td>0.14</td>
<td>0.11</td>
<td>2.23</td>
<td>0.15</td>
<td>2.64</td>
</tr>
</tbody>
</table>

Content

- The evolution of the legal framework: from Citizen’s Charter to service quality regulation
- The development of continuity of supply monitoring in distribution networks
- Incentive/penalty regulation for continuity of supply for reducing interruptions
- Automatic compensations to the customers (guaranteed commercial quality standards)
- A comprehensive view of service quality regulation
CONTINUITY OF SUPPLY REGULATION
The Italian incentive scheme/1

- **Enhance the overall level of continuity in Italy**
 - improve the country average level towards European benchmarks

- **Reduce the gaps between Northern and Southern regions**
 - reduce variation of regional and district levels around the country average level

- **Maintain levels of continuity where they are already good**
 - avoid to deteriorate quality in best-served areas
CONTINUITY OF SUPPLY REGULATION
The Italian incentive scheme/2

- Continuity indicator oriented to point out the responsibility of distribution suppliers
 - minutes lost per lv users, net of interruptions caused by act of god and by users or third parties and net of interruptions originated in the EHV/HV network
- Continuity indicators measured at district level
 - 300 districts (about 100 for urban areas, 100 for suburban, 100 for rural) covering almost all the country
- Mechanisms to make the indicator more sound in respect of weather effects
 - 2-years rolling average
 - deadbands (+/- 5%)

CONTINUITY OF SUPPLY REGULATION
The Italian incentive scheme/3

- THE MAIN IDEA: A CONVERGENCY SYSTEM

- IF UTILITIES IMPROVE CONTINUITY MORE THAN REQUIRED GAIN AN EXTRA INCENTIVE
- IF UTILITIES IMPROVE CONTINUITY LESS THAN REQUIRED MUST PAY A PENALTY
- IF UTILITIES IMPROVE CONTINUITY AS REQUIRED (DEAD-BAND +/− 5%), NEITHER INCENTIVES NOR PENALTIES APPLY
CONTINUITY OF SUPPLY REGULATION
The Italian incentive scheme/4

Ex-ante for 4 years
\[Std_j, t = Std_{j, t-1} \times (1 - \alpha_j) \]
\[\alpha_j = \max \left[1 - \left(\frac{LivOb_k}{LivPart_j} \right) ^{\frac{1}{2}} ; 2\% \right] \]
price cap = RPI - X + Q

Ex-post each year t
\[Q_t = \sum_{j \text{districts}} (Std_{j, t} - Act_{j, t}) \times \left[\frac{\text{CondEn}_{j, t, \text{dom}} + \text{CondEn}_{j, t, \text{dom}}} {8760} \right] \]
\[|Std_{j, t} - Act_{j, t}| < 5\% \Rightarrow Q_{j, t} = 0 \quad \text{Min} \leq Q_{j, t} \leq \text{Max} \]

CONTINUITY OF SUPPLY REGULATION
The Italian incentive scheme/5
How is it funded?

- **THE INCENTIVE SYSTEM IS FUNDED THROUGH:**
 - **THE PENALTIES PAID BY UTILITIES** FOR DISTRICTS IN WHICH THE BASIC IMPROVEMENT RATES ARE NOT MET
 - **A Q-PARAMETER IN THE PRICE-CAP FORMULA:** \[\Delta P = RPI - X + Q \]
 TO COLLECT THE DIFFERENCE BETWEEN INCENTIVES AND PENALTIES

- **BECAUSE TARIFF IS UNIQUE, AN EQUALISATION FUND IS NEEDED**
 TO DISTRIBUTE INCENTIVES/PENALTIES TO UTILITIES ACCORDING TO RESULTS: example

<table>
<thead>
<tr>
<th>Distributor</th>
<th>Urban</th>
<th>Semi-Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>#</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

3 penalties from distributors 1 collected from tariffs (Q-parameter)

3 penalties from distributors: 4 incentives
- 4 x (+1) = 4
- 2 x 0 = 0
- 3 x (-1) = -3
- Net (to be collected) = 1

4 incentives to distributors
CONTINUITY OF SUPPLY REGULATION
The Italian incentive scheme - effects

AVERAGE TARIFF IMPACT FOR CUSTOMERS:
2000-2003 ABOUT 3 €/CUSTOMER/YEAR

- Interruptions attributable to DNOs
- other interruptions (*2003 blackout not included)

CONTINUITY OF SUPPLY REGULATION
The Italian incentive scheme - effects

* Excluded blackout and load shedding
The Italian incentive scheme - effects

INVESTMENTS FOR CONTINUITY OF SUPPLY: ENEL

Investments for quality (dedicated); source: response to consultation paper
IMPLEMENTATION PROBLEMS

- Distribution utilities have generally accepted the new regulation
- Measurement system is recognised to be fair and seriously implemented
- Problems have been encountered in defining Force Majeure and have led to a statistical system (started in 2004 on optional basis)
- Correctness index has been contested in the beginning but after a review of audit procedures has been accepted as well
- Some problems have been found on starting-levels data (years 1998-99) in three regions (out of 20) and have led to special regulation for these regions
 - In this case a sanction was imposed as well; so far it’s a unique case
AUDITS ON CONTINUITY DATA 1999-2006

CONSULTATION AND DECISION PROCESS
2nd REGULATORY PERIOD: 2004-2007

- Quantitative assessment of effects of 1st regulatory period
- Objectives for 2nd regulatory period
- Alternatives
- Views invited on issues

- Draft deliberation
- Further alternatives taking into account comments
- Range of values for main parameters

- Stressed objective of convergence
- Further alternatives taking into account comments
- Range of values for main parameters

- Includes both continuity and service quality
- Technical report with impact analysis
EVOLUTION OF THE OBJECTIVES FROM 1st TO 2nd REGULATORY PERIOD

2000-2003
- Improve the Country average level towards European benchmarks.
- Reduce the gap between North and South; reduce variations between the regional and district levels and the Country average level.
- Maintain levels of continuity if already good, preventing the deterioration of the best served areas.

2004-2007
- SAIDI Regulation: Improve continuity of supply and converge on target levels, differentiated by area type (urban, suburban, rural).
- Multiple Interr. Regulation: Reduce the number of annual interruptions suffered by HV and MV customers.
- Power Quality: Promote individual measurements, quality contracts, monitoring campaigns on distribution networks.
CONTINUITY REGULATION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of continuity regulation</td>
<td>Only duration (long interruptions)</td>
<td>Duration (incentive/penalty)+ single-cust. standard for max interr. number (long interr.)</td>
</tr>
<tr>
<td>Perception of final customers</td>
<td>Small impact on tariffs; Individual yearly account of interruptions (only major customers)</td>
<td>Small impact as before (but c parameter based on WTP)+ automatic compensation for worst-served major customers</td>
</tr>
<tr>
<td></td>
<td>Third parties’ damages: excluded from regulation</td>
<td>Damages: included in regulation (on demand)</td>
</tr>
<tr>
<td>Short interruptions</td>
<td>Only approximate recording</td>
<td>Exact individual recording (starting 2006)</td>
</tr>
<tr>
<td>Market mechanisms</td>
<td>None</td>
<td>Power quality contracts (major customers; not enforced)</td>
</tr>
<tr>
<td>Audit process</td>
<td>Only sampling continuity records</td>
<td>Sampling continuity records + data collection system audit</td>
</tr>
</tbody>
</table>

FIVE SUGGESTIONS FOR “BEGINNERS”

Quality regulation is an **opportunity** both for regulator (not only cost-cutting!) and for companies (improvement can have an economic pay back), but...

1. First of all, you need a **sound measurement** system before setting standards
2. Start only with **verifiable measures** (coming from the part of the network equipped with remote control)
3. Audits are essential to **gain the attention** of network middle management and information systems engineers
4. When setting standards, **graduality pays**: start with a few indicators and with not-too-aggressive standards, and enlarge the quality aspects, raising the standards over time
5. Implementation is the **hard work**: you must found viable solutions, because the aim is improving, not sanctioning
Content

- The evolution of the legal framework: from Citizen’s Charter to service quality regulation
- The development of continuity of supply monitoring in distribution networks
- Incentive/penalty regulation for continuity of supply for reducing interruptions
- **Automatic compensations to the customers** (guaranteed commercial quality standards)
- A comprehensive view of service quality regulation

GUARANTEED STANDARDS (2004-2007)

<table>
<thead>
<tr>
<th>Distrib.</th>
<th>Final LV customers</th>
<th>Final MV customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum time for estimating charges for execution of work on LV network</td>
<td>20 work.days</td>
<td>n.a.</td>
</tr>
<tr>
<td>Maximum time for execution of simple work</td>
<td>15 work.days</td>
<td>30 work.days</td>
</tr>
<tr>
<td>Maximum time for activation of supply</td>
<td>5 work.days</td>
<td>5 work.days</td>
</tr>
<tr>
<td>Maximum time for closing supply at customer’s request</td>
<td>5 work.days</td>
<td>7 work.days</td>
</tr>
<tr>
<td>Maximum time for restarting supply following suspension for lack of payment</td>
<td>1 day incl. Saturday</td>
<td></td>
</tr>
<tr>
<td>Maximum time band for customised appointments</td>
<td>3 hours</td>
<td></td>
</tr>
<tr>
<td>Maximum time for restoration of supply following a failure of the metering device</td>
<td>3 hours (day-time)</td>
<td>4 hours (night-time)</td>
</tr>
<tr>
<td>Supply</td>
<td>Maximum time for correction of bills (for errors in already paid bills)</td>
<td>90 calend.days</td>
</tr>
</tbody>
</table>
SERVICE QUALITY REGULATION
comparison between before and after Authority’s regulation

<table>
<thead>
<tr>
<th></th>
<th>Self-regulation</th>
<th>Regulation issued by the Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of requests with not fulfilled guaranteed standards</td>
<td>6.099</td>
<td>4.167</td>
</tr>
<tr>
<td>Actually paid Compensation payments</td>
<td>21</td>
<td>54</td>
</tr>
<tr>
<td>Total amount Actually paid For compensations Euro Millions</td>
<td>0.001</td>
<td>0.002</td>
</tr>
</tbody>
</table>

SERVICE QUALITY REGULATION
Effects of guaranteed standards (2006)

<table>
<thead>
<tr>
<th>SERVICES SUBJECT TO GUARANTEED STANDARDS</th>
<th>2006 RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of requests per year</td>
</tr>
<tr>
<td>ESTIMATE CHARGES (for work on the LV network)</td>
<td>20 working days</td>
</tr>
<tr>
<td>COMPLETE SIMPLE WORKS (net of authorization)</td>
<td>15 working days</td>
</tr>
<tr>
<td>START THE SUPPLY</td>
<td>5 working days</td>
</tr>
<tr>
<td>TERMINE THE SUPPLY (on customer’s request)</td>
<td>6 working days</td>
</tr>
<tr>
<td>RESTART AFTER NON-PAYMENT DISCONNECTION</td>
<td>1 days</td>
</tr>
<tr>
<td>CORRECT BILLING PROBLEMS (already paid sums)</td>
<td>90 days</td>
</tr>
<tr>
<td>SOLVING METERING FAULTS (with service interruptions)</td>
<td>3 hours (daytime)</td>
</tr>
<tr>
<td>KEEPING APPOINTMENTS (punctuality band hours)</td>
<td>4 hours (night)</td>
</tr>
</tbody>
</table>

w.d.: working days
GUARANTEED STANDARDS FOR COMMERCIAL QUALITY
Implementation issues

- **Defining content of services subject to standards:** e.g. “simple works”
 - ITALY: “simple work” if it is limited to the final network length

- **How to consider delays due to customer or public authorisation**
 - ITALY: suspension of clock for these cases

- **Documentation of customer no-show (no right to compensation)**
 - ITALY: company must leave a message and keep internal record

- **Commercial quality data publication:**
 - ITALY: not only % of requests with standard not fulfilled, but also average times, number and amount of compensations

AUTOMATIC COMPENSATIONS
Amounts and exemptions

- **Amounts**
 - Domestic LV customers
 - Non domestic LV customers
 - MV customers

<table>
<thead>
<tr>
<th>Automatic compensation (AC) paid in the next bill</th>
<th>Domestic LV customers</th>
<th>Non domestic LV customers</th>
<th>MV customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 euro</td>
<td>60 euro</td>
<td>120 euro</td>
<td></td>
</tr>
</tbody>
</table>

- **Exemptions**
 - Force majeure and third party action (to be adequately proven)
 - In cases where the customer is not up to date with payments owed to the operator.
 - Concerning “maximum time for restoration of supply following a failure of the metering device “ the operator shall not be required to pay the compensation if the interruption of supply is caused:
 - by release of lock cable terminals;
 - by intervention of the load limiter due to overconsumption;
 - by damages caused to the metering device when installed in rooms where only the customer can have admittance.
AUTOMATIC COMPENSATION

Escalation in case of delayed execution

![Graph of automatic compensation escalations](image)

- **AC** = automatic compensation
- **3*AC** = three times automatic compensation
- **2*AC** = two times automatic compensation
- **AC** = automatic compensation

- **Date (or hour) A** when the service is actually done by the operator is beyond standard S
- **Automatic compensation to be paid within 90 days from A**

GUARANTEED STANDARDS FOR CONTINUITY OF SUPPLY

- **Focus on average improvement** rather than on the protection of worst-served customers
 - Overall standards referred to a given area (in Italy: 300 districts)
 - Improvement targets and incentive/penalty schemes
- **In some countries** guaranteed standards for continuity of supply do exist
 - Very long interruptions
 - Multiple interruptions
- **Automatic compensations** for interruptions require the exact knowledge of affected customers
 - “Connectivity model” are needed
 - Real network configuration at the moment of interruptions
 - Interaction between commercial and technical information systems
CONNECTIVITY MODEL: ASSESSING NUMBER OF CUSTOMER INTERRUPTED

- **MV network:** evolution over time through SCADA
 - 1999: obligation to have remote control on each MV feeder; avg ratio of customer / MV-LV transformer (differentiated per each of 8,000 municipalities) and standard MV network configuration
 - 2002: ratio of customer / MV-LV transformer (differentiated per each of 8,000 municipalities) and real MV network configuration in case of long (>3’) interruptions
 - 2006: exact number ratio of LV customer per each of 400,000 MV-LV transformers and real MV network configuration in case of both long and short interruptions; full connectivity for MV customers

- **LV network:** recent rule (n.122/06)
 - Up to 2007: avg ratio of customer / LV feeder (differentiated per each of 8,000 municipalities) and standard LV network configuration
 - From 2008: at least exact number of LV customer per each of 1,000,000 LV feeders and quasi-real LV network configuration
 - Incentive for using AMR for having full connectivity for LV custom.

GUARANTEED CONTINUITY STANDARDS
Comparing Regulations in EU

MULTIPLE LONG INTERRUPTIONS
- Great Britain
- Italy (approved in 2004, enforced from 2006)
- Spain
- France

MULTIPLE SHORT INTERRUPTIONS
- France (customised contracts)

VERY LONG INTERRUPTIONS
- Great Britain
- France
- Italy (approved in 2007)
THE ITALIAN SCHEME FOR MULTIPLE INTERRUPTIONS G.S. /I

As from 2006 the regulation of the maximum yearly number of long unplanned interruptions (“multiple interruptions” GS) apply to all major customers (connected to MV networks).

This is a rather complex regulation made of 6 elements

1. Standard for multiple interruptions
2. Exemptions
3. Penalties for distribution companies
4. Automatic compensations for customers (conditioned to technical specifications)
5. Technical specifications for selectivity of protection relais
6. Extra tariff component for customers not compliant with technical specifications (after a due time for complying)

This regulation required a long graduality path and a big effort for implementation and communication

THE ITALIAN SCHEME FOR MULTIPLE INTERRUPTIONS G.S. /II

1. Guaranteed standards for MV customers (1-35 kV):
 • 3 long unplanned interruptions/year (urban areas)
 • 4 long unplanned interruptions/year (suburban areas)
 • 5 long unplanned interruptions/year (rural areas)

2. Exemptions
 • interruptions due to external causes and acts of God
 • interruptions originated in HV-EHV networks (transmission and distrib.)
 • interruptions repeated within 1 hour (only 1 counts)
 • transmission blackouts and rolling blackouts (generation inadequacy)
 • planned interruptions

Percentiles of MV customer per yearly number of long interrupt. (contract. power >=100 kW, 2002)

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Urban areas</th>
<th>Suburb. areas</th>
<th>Rural areas</th>
</tr>
</thead>
<tbody>
<tr>
<td><=2</td>
<td>88</td>
<td>77</td>
<td>73</td>
</tr>
<tr>
<td><=3</td>
<td>94</td>
<td>86</td>
<td>83</td>
</tr>
<tr>
<td><=4</td>
<td>97</td>
<td>91</td>
<td>88</td>
</tr>
<tr>
<td><=5</td>
<td>98</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td><=6</td>
<td>99</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

Excluded interruptions due to force majeure, third party action, transmission and HV network
THE ITALIAN SCHEME FOR MULTIPLE INTERRUPTIONS G.S. /III

3. **Penalties** paid by DNOs when guaranteed standards are not met:

 \[
 P = \sum_{j=1}^{m} \min(2^{2n}) \sum_{i=s+1}^{V_P \times PMI_i} \]

 \[
 V_P = \begin{cases}
 2.5 \text{ €/kW-interrupted (MV up to 500kW)} \\
 2 \text{ €/kW interrupted (MV beyond 500kW)}
 \end{cases}
 \]

 \[PMI = \text{Average Interrupted Power (70% of the contractual power)}\]

 \(m\) means worst served “major customer” according to a graduality path:

 - from 2006: MV customers with contractual power higher than 500 kW;
 - from 2007: all MV customers with contractual power higher than 100 kW.

 There is a cap for maximum amount of penalties (2% of tariff from MV customers)

4. **Automatic compensations** received by each \(\nu\) worst served MV customer

 of any contractual power when guaranteed standards are not met by DNOs and whose installations fulfill technical specifications determined by the Authority:

 \[I_w = \sum_{i=s+1}^{\min(n, 2^n)} (V_P \times PMI_{iw})\]

THE ITALIAN SCHEME FOR MULTIPLE INTERRUPTIONS G.S. /IV

5. **Technical specifications determined by the Authority**

 - **Basic specifications**: circuit breaker, controlled by protection relays able to detect short circuit and earth fault currents;

 - **Simplified specifications** (for MV customers with only one MV/LV transformer smaller than 400 kVA, equipped with switcher and fuse, and connected to the network though a MV cable shorter than 20 m):
 - maintenance contract to the substation with a qualified firm (every 6 months for cleaning, every 1 years for the switcher)
 - register of the maintenance inspections

A large part of long interruptions originated on MV network (around 1/3) are not localised. Some of them are originated within customers’ installations. The objective of this regulation is the selective coordination of DNO’s and customers’ protection relays. This is of fundamental importance to avoid that interruptions originated within customers’ installation may interrupt all the customers connected to the same MV line.
THE ITALIAN SCHEME FOR MULTIPLE INTERRUPTIONS G.S. /V

6. **Extra tariff component**
 - As from 2007 customers with contractual power larger than 500 kW not fulfilling technical specifications must pay an extra tariff component related to the probability that they provoke an interruption:
 \[CTS = 1€/\text{day} + 0.15€ \times \frac{\text{annual energy consumption}}{\text{contractual power}} \]
 - Customers with contractual power smaller than 500 kW must pay the extra tariff component from 2008
 - DNOs can keep a part of the amount of extra-tariff component

Cost/benefit analysis

- Single customers suffering each year 1 interruption more than the standard have a pay back time for the investment needed to fulfil specifications:
 - 1 year (contractual power = 1000 kW)
 - 5-7 years (contractual power = 250 kW)
- Customers adopting simplified specifications have a yearly cost
- System cost/benefit analysis: 3.4 – 4.5 years (including benefits for LV cust.)

THE ITALIAN SCHEME FOR MULTIPLE INTERRUPTIONS G.S. /VI

Implementation issues

- Strong effort for communication in order to divulgate knowledge and enact customers to understand the benefits of this regulation and plan their investments for fulfill technical specifications
 - More than 8,000 customers and installers contacted in events
 - DNOs obliged to direct communication to each MV customers
 - Industrial customer association involved
 - Maintenance of the regulation in order to solve some detail problems
 - Agreement with technical standardisation body (CEI) for developing and issuing a technical norm on electric maintenance in MV customer installations

New consultation process (ongoing)

- Proposed review of standards (from 3-4-5 long interr. to 2-3-4)
- Proposed new standards for long+short interruptions (rejected)
MULTIPLE INTERRUPTIONS
GUARANTEED STANDARDS

<table>
<thead>
<tr>
<th>Territorial classifications</th>
<th>Metro-politan (MV)</th>
<th>Urban (LV)</th>
<th>Semi-urban (towns) (LV)</th>
<th>Rural (villages) (LV)</th>
<th>Rural disperse (LV)</th>
<th>COMPENSATION PAYMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>2 (MV)</td>
<td>3 (MV)</td>
<td>3 (MV)</td>
<td>6 (MV)</td>
<td>n.a (LV)</td>
<td>Amount of claimed damages</td>
</tr>
<tr>
<td>GREAT BRITAIN</td>
<td></td>
<td>3 (LV)</td>
<td>3 (LV)</td>
<td></td>
<td></td>
<td>Compensation of £50 on customer’s request</td>
</tr>
<tr>
<td>ITALY</td>
<td>3 (MV)</td>
<td>4 (MV)</td>
<td>5 (MV)</td>
<td></td>
<td></td>
<td>Automatic conditioned yearly discount proportional to contr. power and exceeding inter.</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>8 (MV)</td>
<td>18 (MV)</td>
<td>30 (MV)</td>
<td>23 (LV)</td>
<td>36 (LV)</td>
<td>Automatic yearly discount proportional to contractual power and exceeding inter.</td>
</tr>
<tr>
<td>SPAIN</td>
<td>8 (MV)</td>
<td>12 (LV)</td>
<td>15 (MV)</td>
<td>12 (LV)</td>
<td>20 (MV)</td>
<td>Automatic yearly discount proportional to contractual power and exceeding inter.</td>
</tr>
</tbody>
</table>

Territorial classifications are different, this table makes an attempt of a relative comparison

Source: 3rd CEER Benchmarking Report, 2005

VERY LONG INTERRUPTION SCHEMES
Main experiences in EU

GREAT BRITAIN
- Normal situation (non-severe weather): 18 hours
- Severe weather: 3 types of events, 24 to 96 hours
- Compensation: £25 at the trigger + £25 every 12 hours
- Allowance pre-set in the tariff (initially a partial cost recovery was admitted)
- Transmission faults excluded
- Compensations: active role of companies in detecting affected customers (“semiautomatic“)

FRANCE
- 6 hours, but excluded very rare events (probability < 1 out of 20 yrs and > 100,000 customers affected)
- Compensation: 2% of fixed part of tariff every 6 hours
- Transmission faults included
- Automatic compensations
THE ITALIAN SCHEME FOR VERY LONG INTERRUPTIONS /I

- **2003**: Blackout for transmission/dispatching problems (lost interconnections with abroad during night min-peak)
 - 33M customers affected (only Sardinia at safe), up to 24 hours (Sicily)
- **2004**: Large interruptions in some regions due to exceptional severe weather.
 - More than 2 M customers involved in 4 large events (7 regions);
 - Around 400.00 customers interrupted for more than 12 hours
 - Around 50.000 cust. for more than 2 days (up to 5 days, 2.000 cust.)
- **2005**: First round of consultation
- **2006**: Second round of consultation
- **2007**: Third round of consultation and final decision (July)
- **2008**: Implementation time
- **2009**: New standards for all customers in case of very long interruptions with automatic compensations (even LV cust.)

THE ITALIAN SCHEME FOR VERY LONG INTERRUPTIONS /II

- **MAIN ELEMENTS**
 - GUARANTEED STANDARDS ARE APPLICABLE TO BOTH NORMAL AND EXCEPTIONAL EVENTS
 - Urban areas: 8 hours; Suburban areas: 12 hours; Rural areas: 16 hours
 - STATISTICAL METHOD FOR IDENTIFYING “MAJOR EVENTS”
 - DOCUMENTAL METHOD FOR IDENTIFYING “EXCEPTIONAL EVENTS”
 - SUSPENSION OF CLOCK OM
 - COMPANY MUST PAY GUARANTEED STANDARDS
 - IN CASE OF MAJOR OR EXCEPTIONAL EVENTS, COMPANIES ARE COMPENSATED THROUGH A DEDICATED FUND
 - ALL CUSTOMERS PUT A LITTLE MONEY IN THE FUND
 - COMPANIES ARE INCENTIVESED IN ORDER TO IMPROVE THEIR PERFORMANCE IN “NORMAL CONDITIONS”
 - Companies must put money in the Fund according to their actual quality net of major and exceptional events
 - Companies receive a sum that is proportional to the expected quality (decreasing over time)
Content

• The evolution of the legal framework: from Citizen’s Charter to service quality regulation

• The development of continuity of supply monitoring in distribution networks

• Incentive/penalty regulation for continuity of supply for reducing interruptions

• Automatic compensations to the customers for not fulfilling individual quality standards

• A comprehensive view of service quality regulation

Output regulation

- CALL CENTERS
- BILLING
- APPOINTMENTS
- RECONNECTIONS AFTER NON-PAYMENT DISCONNECTIONS
- READING
- COMPLAINTS
- NEW SUPPLY ESTIMATES
- CONNECTIONS TO NETWORK
- PROVIDING SUPPLY
- METER INVESTIGATIONS
- UNPLANNED SUPPLY INTERRUPTIONS (LONG AND SHORT)
- PLANNED (NOTIFIED) SUPPLY INTERRUPTIONS
- VOLTAGE INVESTIGATIONS
- VOLTAGE VARIATIONS
- VOLTAGE DIPS / SWELLS
- RAPID VOLTAGE CHANGES
- FLICKER
- HARMONICS
- UNBALANCE
Multidimensionality is an issue

Regulators generally find it easier to regulate price than quality.
Price has the greatest advantage of being (in certain markets at least) both one-dimensional and objectively measurable.
Quality, on the other hand, is hard to pin down. It has many dimensions, some of which typically rest upon subjective evaluations by the consumer.

R. Baldwin and M. Cave,
Understanding Regulation, 1999

Service quality regulation objectives

MAKE INFORMATION AVAILABLE
- SET RELIABLE MEASUREMENT RULES FOR QUALITY FACTORS
- PUBLISH ACTUAL QUALITY LEVELS

PROTECT WORST-SERVED CUSTOMERS
- SET AND MAINTAIN GUARANTEED QUALITY STANDARDS
- DETERMINE INDIVIDUAL COMPENSATIONS FOR STANDARD MISMATCHING

PROMOTE QUALITY IMPROVEMENT
- SET AND MAINTAIN OVERALL QUALITY STANDARDS
- LINK QUALITY AND REVENUES (TARIFFS)

FAVOUR AND TEST MARKET MECHANISMS
- PREFER CUSTOMER CHOICE WHENEVER POSSIBLE AND SAFE

REGULATION OF QUALITY

PREREQUISITE INCENTIVE QUALITY REGULATION (P.B.R.) COMPETITION
A map for understanding service quality regulation

<table>
<thead>
<tr>
<th></th>
<th>MAKE INFORMATION AVAILABLE</th>
<th>PROTECT WORST-SERVED CUSTOMERS</th>
<th>PROMOTE QUALITY IMPROVEMENT</th>
<th>FAVOUR AND TEST MARKET MECHANISMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMERCIAL QUALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY OF SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLTAGE QUALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A map for understanding service quality regulation

<table>
<thead>
<tr>
<th></th>
<th>MAKE INFORMATION AVAILABLE</th>
<th>PROTECT WORST-SERVED CUSTOMERS</th>
<th>PROMOTE QUALITY IMPROVEMENT</th>
<th>FAVOUR AND TEST MARKET MECHANISMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMERCIAL QUALITY</td>
<td>Quality data publication</td>
<td>Guaranteed standards</td>
<td>Telephone response incentives</td>
<td></td>
</tr>
<tr>
<td>CONTINUITY OF SUPPLY</td>
<td>Regulatory measurement guidance</td>
<td>Multiple interruption standards</td>
<td>Incentive/ penalty scheme</td>
<td>Power quality contracts</td>
</tr>
<tr>
<td>VOLTAGE QUALITY</td>
<td>Volt.Qual. Monitoring systems</td>
<td>Volt.Qual. minimum standards</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Handbook of service quality regulation

- Product of joint cooperation between CEER and Florence School of Regulation (FSR)
- A tool for regulators, utilities and scholars
- Both beginners and advanced topics
- Contents:
 1. Introduction
 2. The basics of service quality regulation
 3. Commercial quality
 4. Continuity of supply
 5. Voltage quality
 6. References on specific issues
- Published in Sept-07 by Springer

Objectives of the Handbook

- To describe the regulatory instruments that can be employed in service quality regulation
 - Focus on design and implementation of quality regulation in practice
- To help develop a shared framework for service quality regulation across the EU
 - To facilitate the sharing of ideas and innovations
 - To encourage the exchange of data and information (further research and analysis)
- Structured according to the map
 - Each chapter is referred to a cell in the map
Reasons behind

- **CEER 3rd Benchmarking Report**
 - During the preparation work the need for an Handbook raised from many EQS TF members
 - Good results obtained in different countries

- **EU-funded Twinning projects**
 - Service quality regulation of paramount importance in new accession countries (privatisation + price-cap)

- **FSR interest in launching a book series**
 - Publication of both training and academic interest
 - No robust textbook in this field

General messages

- Preliminary requirement: quality data measurement
 - Regulatory instruments must be fair and simple to implement

- Adjust regulatory schemes to account for specific industrial and institutional factors of the country

- Quality regulation greatly benefits from a gradual approach to the implementation process

- Quality regulation is never a permanent solution: periodic evaluation and revision

- An open dialogue across all interested parties is a fundamental part of an efficient regulation
Liberalisation is often opposed on the grounds that it could damage public service and weaken national industry.

We have taken quality of service as one of the main targets of regulatory action, the aim being to demonstrate that liberalisation plus regulation will produce better quality than did the previous regime.

Pippo Ranci, former AEEG President

[P. Ranci, Regulating Energy in Italy, in: C. Henry et al. (editors), Regulation of network Utilities. The European Experience, Oxford University Press, 2001, p. 195-204]

If you are interested in further details...

www.autorita.energia.it
data: >elettricità>qualità
rules: >attività istituzionale

...thank you for your attention!
lloschiavo@autorita.energia.it